
Lecture

Representation Learning :

ML -> tell the computer
"how to learn" from data

b
real words data has "structure".

en) Lease
square regression

↓
neede to hadecrafted feature representation.

for example : Laptop : <pu
,

ran
,

weight...

"blem : Image feature representation is in high-dimensional space
-

(256x256x3) ...

Wo +
regression

model : w
, x (pixel 1) + pixel &

Y
S

Wex (pixel 2) + ,
->

prediction
-> prediction.

--- t pixel
> function

Wk x (pixel k)
.

Doesn't consider the
orximity of pixels

(no location information given to the model).

H

information is contained in the images ,

but not in individual pixels.

(Pattern is not captured !

)

↓

Solution : a feature extractor to detect pattern.-

pixels- feature extractor
-> features -> prediction

function .

I
building good feature is hard



↓
=> representative learning .

-

near Algebra

Vector Erd as a corhinate Vector =1-

/2

->

- Y
en) i = ( _ 3) ER I

↓

j = (2)
->

↓ K

Writting vector in coordinate form requires choosing a basis

↓
1

Standard Basis" : "
,
...

-

Ist coord.

" = [i]
,

e =[i] can roard

so
,

i = (x, .
. . (d)

T

= u ,

"
+ 42

|
+ - - + xde()

↑
-

amount in

1st cood.

en)
. i = (3

,

- 2)" = x
, [b] + 4[i]. *

E
, 2

↓ ↓

= 3 =
- 2 ~

In coordinate form :

=) ith coordinate
-

IStandard basis Vector) .

where the I appears in the ith place

Heproduct :

i. = 11/IIII cos 0
.



where F is angel between is and i.

-7 Y
W

& 0 ↓

Wh i. = 0

· . = 0 E) is and i orthogonal.
-> IIIIIIVl/cost = 0

-> Cost = 0

-
- = 90

%
=
I

i. =
+ 2

.

=> orthogonal

= (,
... uns (t) Cassumes Standard basis).

= u 1.
V

, + - - + Ud . Va

= vi

ens() · (8) = - 5.

Is there any other bases ? -
13

Standard basis
:

0 + o ⑤

other basis : ③ [
Q A

↓
Orthonormal bases
-

A set of vectors
--

...

(d)
forms orthonormal basis U for RhU

it
they are mutually orthogonal : "' . " =

-

· they are unit Vectors : 11 ' ll = 1
-

en) "
-- Yk) =

7 ·
"' >

&
"

ens i = El !) =Eli).



0 " =
l

, 1) E(-1 ,
1) T

= I (0)
~ -"""

= 0
.

② II" Il = 11(1 ,
1) ll = 1

v
11 i 11 = E 11( - 1

,
1) ) = 1

.

=>"i'2 forms orthonormal basis.

· Vector's coordinate depend on the basis used
-

& "12g /not necessarily standard basis)
· If we are using basis U = '' re

[ In = 1 ,

2

,
42

U T
- we write this to denote the coordinates

S S

[
wr.

t
.

to the basis U.

i = x
,
" +xi

amount to scale for the ith basis.

en). = (1
, 13T

u = ) - 1
,
1)"

.

Suppose [ In = 13, .4) .

2 . " = 16 ,
"i" +2) .

''

= a
,
"it is'" + """ "

-

↓ -

11 will = 1 = 0 b/2 orthogonality-

=
x ,

4
= 3.

->
U

=> ⑫ . " = X : (conclusion results
.

en) i = (2
,

2)
T

[2) =[i] + [i]
.

= (1, 1)U

-
= ( - ,

1)T =>
_

C = x
,
4) - 1

U

(2 = x
,"El) +x(

- >

sin(2 R = c ,
"is"+ -

-

unknown
-- solve 2

,

2

,

424



u /(2)

Alternatively
,

since 2 = 2
,
"it' + 12 U

i .

'
=

0,

4

(previous result)-
->

x
- i = x

=> a. = [c]· [i] = E

22
u

=
- -- = W

Achangeof Basis

Let an orthonormal basis
.

Then .i" i c,i +.. - +x

U =E
,

...r
e

(
"()=*(ii) + o

! for k-th coordinate.

-(inam (

Y

↑ = xi-
(bydot producting the new basis)

.
(only true for orthonormal basis).

ess suppose
= 12

, 1) .

[In = 12
,
1)T for standard basis

.

-
= (1 ,

1) T
L

change to new basis.U

is = E (+, 1)"

~> [i]. til =

=
- [ :1. lit=

- !
L

en) .

i = (- 1
, 4)

1-1)
. " = 3 "(4) .

E = I
U

(11)
. 'Y )

= - 2 1 . = 5
we can check orthogonality :U

/4) - /(2)

= U I " = [*] in terms of standard basis. "e" - U =- 13 7 0.

je = 2 [5'] (new basis)-
So.

[x]

= = X, +he"

(21 = x , [2] + ac"[1
.



solve for 1
.

4 & sc"

2
,

"
= -/is

x24 = 10/13

Function of avector : f :
Rh -> pd

->

A informative - is a functive that takes in a rector and

returs a vector of sanf dimensionality.
-

↓
f : R

&
-> R

&

efield
. -

calculate corresponding vectors

· Transformative is a for each point. ↓
en)

flu) = 10
,
2)

i

-

· for Fis = 13.
,

201
.

a = [bf f(a) = [8]

)- I

-

-

C
ill- 7

-- - -

y= C

---y
-

y7 T
b - - - - - - - - y = /

·
1 1

Then a transformation is generally :

(i) = 19, (i)
,
92(ii)T

·

Linear~ransformation :

Transformation is linear if

#+ 15) = a-(i) + BF(5)

en) To check if a transformation is linear :



(i) = (a2
,

- 2
,)T

LHS = [ (aE + 15) = 1aE 13,
11

dS2 + By

RHS = aF() + BF(5) = a() + P() = ) - as - 19 I
So LHS = RHS

,
E is linear

· Suppose I is a linear transformation :

-

#(i)=
enis

g
standard basis.

↑
linear transformation to basis rector.

H

· transformative determined by what it does to basis rector.

· Note :
Go not hold for arbita transformation

->
V

f (a2 + pij) * af(i) + 137(5)

= (a ,
" + ure") # G

, (e") + uf()
.

ens [(i) = 10 , 42)T.
· b/c of linearity

, along any
direction I ageonly in scale.

->↑ (x ) = Xf(m)
.

24 ↑

F (i) f(x) = x f() .

Along a given directive in vector field
,

can be simplified as

unit vector direction
.

Transformation in other basis :

-

IJSI & LIn.



T

en). [(E) = 12 ,
+ Uc

,

U
, -42)

·

(in searhard basis).

↑
= EC1 , 1)" linear transformation
-> (2)

= El - 1
,
1)

.

U

j
othonormal basis

↓
-

->itsa(f) =Y I S,

i+ 6)

= S
,
Y (*") + 6. F in)
- -

calculation.
plug in

" IJi In : =.

Matrices
-

(A) : = Aija;

in general :

↑ x

-> 135I=+↓

Standard Basis.

Then
, suppose f linear transformative : I

- - 7

= (i) = f(x ,
2 +22 ) = u

, Y(2")) + 22f(e")

--------- -

↓
Idea :

↑

A caxn] matrix can
I

&
Matrix as a

be interpreted as a ↓ form of linear transformative·
compact representative of linear b/c

A =(f()(
transformation 7 : /" -> R"

I F(i) = Ai = A()
A is = (i)

S = a
, fie") + Refle*)

.

--- - -
-

en) i = se") -4 = (-4)
[ ie") = - 'c" + 32P



I1") = z's"

so
,
[(i) = c

, Ile")) + unf(e"(

= 323] + -4)

Alteratively: ↓L
A = [3"if
c) = Ar = [s"][-4].

atricesin Other Bases :

92

->

au = (if("(2 ... if (s)]n)
↓ ↓

=(i) : (x ,
" +a) = " (i) +u [( *

Y

=> If()) = [m,/"l + aFl"In = a
."[Fl")In + r[F(*In
-

by U = orthonomal - AlTi In
basis

.

Consider It which mirror a ventor over 450 line .

?? fli)
450

↑ (() = [i]
a!

F -

↳ I

, co 4 x2

*
A [] = (ii)

x , N

A = CY6]

ens i = E(1
,
137

is =* (-1
,
1)

T



f(ic
-

=>f(x) =

"

transformative of orthogonal basis

T 11]....
U

is F( Y : - i' if h is orthornormal :

" ↓ reprojected transformed vectr-

back U basis .

S ~

f(i4)
A" = [F(i"In , If li "Ant

[In =F,I
=ia↓S( L

= [ii]
linear transformation of orthornormal basis

as a matrix representation .

Figenvector& Eigenvalue

Av = X
,

↑ I
eigenvetor eignvalue x

of A

I linear transformation .

=> eigenvector of f with eigenvalue & is a nonzero vector i s
.

t.

f(v) = Xi
.

iden :

When F applies to one of its eigenvector . I scales it.

(not changing any direction.).

" f(z) f(z) = Xi
>=

↓

↓

Finding eigenvector => O Graphically , find vector that are in the same directive
->

after transformation f



②
... => a set of a eignrectorItorNots: not all matrices have even one eigenve ·

·
>

-

- that are mutually orthogonal .

Am : Let A be an nxn "Symmetric" matrix. (there can be many set).
-

(Spectral
=> there exist 1 eignweaters of A which are all mutuallyorthogonal.Theorem) -

1

symmetric
/

E) AT = A

① symmetric linear transformative havetheof symmetry

8 The axes of symmetric are orthogonal to one another.

③ The action of along axis of symmetry scaled input.

① size of scalies might different 7.
Note

, if A is diagonal
,

its eigenvector are

f(i? ") = X
,
"

-

Vectorthe Mandardbasis f (i) = Xzi'

Total Symmetry : infinity many eigenvector
-

↓ eas A = [51 = 3 . T 6 %)
.

= 3 I

every vector is an eigenvector of A !

Eigenvector as basis vector :

-

If A is symmetry
"...matrix

, pick to its eigenventor

to form an orthonormal basis.
-

(eigen decomposition) .

- >

Any Vector I
can

be
~ ritten in this basis :

ic =
b

,
i + ... + bu() u = 2 a ... (k)

= [] =[i]
(eigen-basis). as eigen-basis

expression.

f(i) = A = Alb ,
"+ - + baum)

= b
, (Ai") + - + ba(A ***)



= b
,

(X
,

" ) + . - + bb(Xh'
*
)

= (b, x
,]i" + ... + (b4Xd)(d)

.

So
,
if A is symmetric

,
eigenbasis U is an natural basis.

+ (i) = Ai = X,
b,

"
+ Xbci" + - - + Xabqh(

scale of each coordinaic ith of Life by eigenvalue Xi

as optimizermigenrector

- 7

ens find unit rector S S
.
C

. llAll largest.

N

largest in direction of axis of symmetry.

I directive of eigenveor w/ largest eigenvalue).

!
-
L

largest transformation. in terms of magnitude-

To maximize/minmiza llAl = IIf (1) over unit vectors .

- >

pick x to be an eigenvecti of I with largese/smallest eigenvalue.

in particula,menizerof MA S
.

2 . Hill : 1 is the genvector) of A.

Pf :

Let i = b
,

" + bei' & Il zell = 1
& Ac = b

,
x

,
i " + be Xai'"

bi + b2 = 1

IIAc1 = (A) ·(A) = (b ,
X

,
i "

+ b2 Xci")) : (b, ,
i "

+ bede")
.

O Ili" 112 = 1
- =...

② 'i's = 0 = b,2 x
,

2

+ be xe"

for i j
↑

if(x . K(x2) (x , :> x*
To maximize

,

the b ,
be = 0 maximiis

is
"

is top-eigenvector .



To maximize Ai over unit

~
,

pick is
to be top eigenvector -

rof :

is Ar = (b,
"

+ be ") . (6, X, + bete)
.

·

= b, 21, + o + o + be Xc
-

= b
, "

,

2
+ be "x"

- (same proof as above)
.

ea) Max 44. + 282 + 34,
42 subject to x.

2

+ 4 = 1
.

↓

112 11 = /

So
,

A = Tu [ = ari + (b + 30,
2n + an

T

↑ ↑ /
= 44

,

2
+ 34 , 42 + 242

,

A symmetry

= a = 4 A = [c]
b = c = 1

.

5

d = c

To maximize is . As
s

.

E. Hill = 1
,

A = [ 21.

fish i*, top eigenvector of A

Eigenvector~Equilibria :

- >

idea : (E) rotatesIn toward the "top" eigenvector.

is
an equilibrium. F() = Xi

methods of computingpeigenvector/value. (power method).

· initialize 10)

repent until convergence :

-> ( . + 1)
= A"/11 A "'llU



~
change of Basis Matrices

S

Represent change of basis as matrix.

=/) =a + ac &

S ↑ (2)
I

I

A : [F(")Y(e)): /
suppose "u !

&

I

insi
i = b

,
ii" + b

,
it

I

12 , 1

: (a + !- -

/

b= " U ....s'" Orthonormal basis U
-

I
->12 as a matrix

bz = ai iT

Corthonormal basis property)
/

I

=
A =

y
= ( · (

basis matrix

>
So change of basis as matmul :

~ en)

F(:) = [in = His
.

-

i' = (5/2
,
1/2)i

If U is change of basis
is

= 1 - 1/2
, 8/2)T

matrix :

i = (12
,
1)T

- >

[i] S
,
to = K =[

-

Hiagonalization :

Recall matrix as linear transformation f:
ye

A = (F(2...(a)(
↓ ↓



If we use a different basis U = Ei" ...% :

An = /[E/ : "In ... [Fifu)
-

[]c = His

= ij = Aic

:Antifa .

=)
Suppose A is matrix

, find basis U

S
.

t
. Are is diagonal .

↓

If A is symmetric matrix,

pick a of its eigenvector ii"....,

to form orchogonal basis.

An = ([FIn ... I I
"

..
O I

O
" I

-

diagonal !
* genvalue

.

why ?
↓of

/"In=)(/

!S
X ,

)
-

= b/c

orchonormal
·

matrix of linear transformation I in basis ofI
its eigenvector is a diagonal matrix.

-

entries are eigenvalue.

Compute f(i)
OK j = Acc

D . change bass TO eigenbasis U : uj = UA
- Y

-

us [In = UAUTIEIn②
. apply f in eignbabis wit An.

An[cIn = UAU"[iIn

[j] : Antiln.
An = UAui

③
, go back to standard basis. -

uT[]14
.

=> A = 4And u = ui
-



= [Ani !] = Ar

&
=> U"Anl = A

Ihm :
A be nxn symmetric Matrix.

= orthogonal matrix U

Giagonal matrix 1
"U hingonalize A"

.

S
.

+. Enthu
-

where rows ofI are eigenvector of A &

entries of 1 are eigenvalue.

PCA
-

High dimensional deata
: [

Reduce dimensionality by -nimizingloss of information

OR" - R'(i - z
. )

eas two features [MyX
Phone wouch and weighe h

↓

ZER = combination of Se , and R,

Cmixture of feature) .

z = is. Clinear combination]
.

ye

iden :
mixture coefficient ,

we assume I11 = 1.

-

2 a
in dir of is

,

scale to some magnitude.
- >

- >

Th
= U

Mill cost Since is. = 111 . Hll cost

o
= 11 llost

.



- >

So W define d direction
& ~

zi) = i") . i represent position/magnitube of is along is.

↓we pick :

along hiretion of "max variance
"

,

all dimension are well-separated.

Algorithm :

/

pick
->

to be the direction of
(1

-

U max variance
-

z =
"

.
s what is max variance ?

Il
W

principle component.

Covariance
~

Matrix

Var(X)= " - M)
-

"
Measure how 2,

,
42 vary together :

- > Lor(4, Xc)

000 -M) (ii) - Mr)
.

·
O -

~ ⑧

-

-> U W
%

quantify the "trend" or relationship.
8 8

o

Centering

Elis SeeI S i = (i) - M.

-

After centering: (2002:(ow of features : +is
- q -

I

↑
him : him ; naza

prices.

-

GivenGata "
... it' ER"



Sample covariance matrix C is Exh matrix whose is; entry is

defined to be Gis.

6, 612- 6 & E

Gij=
)-l >Xj -oa!

sonsnst · diagonal are variance

6 ii = (or(Ki
,
xi) = Var (i)

.

Cunbiased estimato . )
.

·

symmetric matrix.

How to compute
C :

1X L
I

I
①

X himensia

② Make E by centering X : z =X-I(
③ C= ZZ

.

What is Covariance Matrix ?

=

top eigenvector is in hir of max variance.

↓
eigenvalu proportional to variance.

i eigenvector
describe the data "principle direction".

Not work for "non-linear" data.



idea
m

eigenvector of covariance matrix points in direction of max variance.

:
-

let is be Unit rector.
11 Fll = 1

z = Ein
,

new features for "ERh.

Var(z)= -M -M

↓
Mz = mean of EZ"=)=)

Variance ofhuta in direction is is : of bath points

Var(z) = - Mz

= " i - E . Mx)"

= ((" - (x)]) ? = g()

1 j
those are given by data.

we can henoze Var(z) as glie)

- TGoal : find unit rector U maximizes function 9 .

max sli) S
.

2
.
Mill = 1.

Observation 0 : glu) can be written as gluS : i"(is

↑

I covariance matrix of data points
i = 1 ... n

W
(c = +z z

,
z = X - [u=)

Observation O : our problem becomes

max in< is =>
The solution is :

↓ in *= C's top (largest) eigenvector

S
.

t
. 11 11 1

L 9) (in
*) = Xmax of C

.



(a
+ b)

"

= a bbia
Observation ① is true

b /c :

9)(i) = Var(z)= "
- Mx)]"= "(*"

- Mx)( ** - Mx)"in

= ui) (" - Mx)( ** -Mx)i)is = in ziz) = in"(i.
-

- ↓
- Nx

L

z"
- My Y*

- Mx ...

(
- M+] I S (2)"

- M↓I
A

- ()" - My

zT --

Z

This is essentially the covariance matrix
.

Observation E can be provch-

find it maximize (

O C is covariance matrix = C is symmetry.

②Since C is symmetry , eigenvectors are orchonormal
.

(special Thm)

- 11) -12Then letc's eigenvectors toa &
u . ...,

(d)
and Let

n = d
,
i + &24() +... + dbh(

* )

Then
,

we have g(i) = i(i = [d ,
4 + -

.. +d]"([d ,
4 +... + du(h)]

= id,
Y +... + ah()]"((d

,
u +... + (du(h)

since
(l)

= xj()
↑

= Id,
"

+... + dan[" (9,
X

,
4 + - + dax(h))

.
eigenvector property .

= a= x
,

+ di xc + ... + daxd Since
(i)/(1)

Without loss of generality ,

let X
. <x2) ... > Xh.

Thus
,

to maximize g(u)
, pick ,

= 1
,

dz = dy =... = da = 0.

=> i*= " Leop eigenvector

g(u*

) = X1
.
1

.



AAlgorithm :

-
-

!X = )
- yui -

!
Given data points

- >1) ... ER"
.x

& Compute corariance matrix ( Mx = * "

& Compute the top eigenvector is of C c = +zz

③ For it l, .., ng
,

create new feature.
z = X =[! I

z = .)

PCA for k principal components

=[ !
(k > 1)
-

2 features :
= (E , , Es) .

z, = i = ke, x
,

+ ... + Md"uh
.

-
-

, 2) - >

zz = U · x = m
,

"x, + ... + Mad
-

↓
How to find ?

-> 1)

① choose -1 to be hogonal to U

=> No "redundancy" (i & is no overlap).

② Since for symmetric matrix
, if is and i are eigenvectors with



distinct eigenvalues
,
they are automatically orthogonal .

- >, 2)
So

,
choose U to be

91 Amenreator of C

↓
called t

he second principle component.

↑
is the second eigenvector of C.

cout of all rectors orthogonal to the principle component,

points in direction of max variance).

Thus
,

for data - " ... FER"L S

-> (k)

U S① Compute covariance matrix C
,

top 11 de eigenvectors
"

...

u -

-

② For any vector &ER ,

its new representation in R" is :

E = (z ,
... Ek)"

,

where
in matrix form :

Xaxh =

- E" -

"
z

,

= Y .
" (

- ip() -

I
zc =. in =- I: is "ER"

/

,

zx = *. Y(k) c =
win,

IWexh = Xexa-[j
let

nax = [i" ..."I ,

it' is C's top
; eigenvector

Thus
, =[ = vix

= (e)



PLA reconstruction point :

-

1" -> Rh ?

Suppose new representative of 2 is Z :

Z,
= .

"

Given is & E
,

how to reconstruct ?

idea : X = z ,
i *

(reconstructed)

minimizing reconstruction error

=> PCA
.

reconstruction error

->

1c construction of I is.

r
z, + zzu +... + zi) = Uz

.

-
-

T
i

reconstructed projectea amont
point

01 each principle component.

Reconstruction Error :

-

11 * -
all = 11) - Vell

.

"

Total error: " -VI
,

=VE

PCA
~interpretation

:

& imensionality Reduction :

Given an orthonormal basis ti" ... F.

project data his
on to this new basis and get

the

11) . " 113

"new" hata poine Elis =

I Esij
.

l ↓ = Vi"
,

Vax = (v" ..."7
.

"new" data matrix : Ex =-I



For PLA
,

we are essentially doing-

choose the basis ↓ is ... If to be seecialbasic :

the top
1

eigenvector of C
,

where C is the covariance matrix of se.

& Caxh = +win)
.

benefit : #1: has max variance

# 2 : reconstruction error is minimize Il * -VE11"

# 3
: Zi & Z; are uncorrelated !

new features .

View #1 Maximizing Variance :

-

PCA maximizes the total variance of the newhata.
-

(choosing most "interesting" new features which are not rehunhant).

Y

"Total Variance : sum of variances of column Z
. Cup to Principle component

1).

z :[ I 11T ... ERE
"

- 2
-

I ↑
new desea.

Is E
- - - kth

him
him

total variance = Var(z . ) + Var(ze) + ... + Var(Ek]
.

= Xi
<

X
,

X ... X
.
(total variance = sune of eigenvalue of 2).

Claim : choosing U to be top eigenvector of Cmaximizes the total variance. among

all choices of Orthonormal U
.

Error~#2 : Minimizing Reconstruction

PCA minimizes the reconstruction error .

~
the "best" projection of points onto a linear subspace of himensionality 1.

total reconstruction error" - VE"Il ?



Claim : choosing U to be top eigenvectors of C minimizes reconstruction error
,

among all choices of orthonormal V.

-view#S Decorrelation

PCA learns new representation by rotation data into a basis

where features are uncorrelated. ↓
(natural basis vectors are

proof :
the principle directions)

-

-

[ z =[I eigenvectors of Covariance matrix.

!

Fiz=
Relation between z & X :

E = VicV =[ ...i"1
.

-

=> F2 = [: = Z
,
Vi = Ul ZEE") = riFix

-

So
,

to show Ei & E; uncorrelated
,

V it ;

=> Cor of Z should be a diagonal matrix.

=> show Cor(Zi
,
Ej) = 0

.

fitj

!lovz = Ez
,
E = Exx-- E-( !

T
- inz --

#
Ej = (E - Th)" =- Vic)

L

(1)D centered original data.

!

- -

I v = wU

Conve = in (wus" wa

= ViWTWU = U /IWTW)V = VCU
,

where < is Cour of he



Since V is L's eigenvector ,
so

cr = r[" x7 = ux

=> Conz = UT (U

= VTUX

= X = diagonal matrix
.

~
exectral Embedding

problem :
learn a classifier to split

· .. 00 - 00 000

mroll a spiral.⑧
↓ !

P (A ? => No maximum variance
, points are overlapped

.

It's just "rotate" the data.

Example :

Sol : spectral embething



Then :
hate expressed with↓dimension

,
but it really confined todimensional region .

original data=h k < d

hidden structure= 1

5
this is called a manifold (a lower dimensional space).

# de is the ambient dimen sion

· k is the intrinsic dimension .

Manifold Learning

Data in high-dimensional -> recover the low-himensional manifold

line manifold (PCA)

non-linear manifold (laplacin eigenmap).

Euclidea Distance Chist . in data space

Geodesic histance
.
(hist

. in manifold space

Enclidean
Geodesic

if data in linear manifold , geodesic exalidean.

Problem : map
data in R& to R"

,

kd S
.

I .

clo a
histance



Solution :

① Given data in Rh
,

CER"

② Built
a similarity graph from points

③ Dimensionality reduction
: find spectral embedding via graph laplasian.

=> Given " ER" compute ↓ zi ! z() Rk

Build a similarie graph :

7) approximate geodesic distance well.

Three Approaches

Alisonneighbors graph .

Creaze a graph with one note ; per point
Z in

And edge between : ad ; if Il-E"ll-E
.

=> unweighted graph .

adjacency matrix Wexn = [Wij]
,

Wis : I if has edge else 0.

not good
o & too small

, graph
under connected

·E too large , graph

not good. over connected
-



② K-neighbors Graphs
-

· Create a graph with one nobe ; per point
Es's

· Add elege between each mode ; and its 17 doest neighbors.

=> unweighted graph.

Whe [wij]

I
=> asymetric .

-

③ Fully Connected Graph
-

Create a graph with one nobe ;
per point is

And edge between every pair of nodes.

Assign weight of h(E, i).

=> weighted graph . in particlar, two close poines has large weight-

common similarity function : h(, 5) = Elli-1462.

- -
h(i, j)

value of 6 influence the weight.

M
! ·
I ↓

close far
dist. dist

.



-

Similarity graph -> Similarity matrix.

Embed nodes of similarity graph as points.

· Given similarity graph with a nodes & a # of dimensions K.

Compute : an embedding of a points into RK S
.

t. similar objects 4/2 nearby
.

-MucZ"ER",

z' follows the similarit in sir uavizygraph).

① when k = 1
,

- · suppose
a nodes TO embed

A assume numbered 1 ... 1

· letf1
,
fe" futR be embeddings.

11-h space
· pack then into rector

% 1)
· goal : find a good see of embethings .

=> Optimization Problem :



· cost is low if similar points are close.

(point 2 & 3 are similar if (fc-fs) small).
Wijn

↳twiti-fil
where Wij is weight between : and j in

similarity matrix.

· if Wisn0
, (fi-ti) "can be large.

· if Wijel , Ifi-fi/ should be small
.

goal : min cost (f) problem : cost is always minimized when I = 0.
- >

-

↓
f

↓ or Y = -1 , . .

., 13 (if 1 F1 = 1)

Better optimization problem :

~iii),simininitymarcose(7)=

subject to 11F11 = 1 and + (1,

. .

., )2 T

Define L = D-W
,
(2 is the Graph Laplacian matrix).

where D is the degree matrix
&

Duxn is diagonal

W is similarity matrix
,

Waxn

L1xn

Claim :

cose(y)= Wij(ti-fi = 2YiL

Prof :

Ifi - fi = fi - 2 fiti + f:
"

5 Wij (fi-fi)"= Wijfi + Wijfi"-2 Wistifs



2. Wisti = Iti [Wij = I: hifi" (hi = ZjWij
,

which is the begree).

Wisti" = [jhif,
"

Ex Zidific

so
, 2 [hific-2Wistiti = 2 ([hiti-Ewistiti) .

Laplacia matrixL= D - w
, = TL *

Note that :

degree (i) = wij = sum of weights associate with nobe i

Wil W
, z

--- Win

Degree matrix I " " , !ith-row -> Wil Wiz... Win

$ = [
"

... an
! ·

/

/

&

dii = Gegree (i) = Wis

Our optimization becomes :

mincose(f) = Y i (i) L = D-W
,

(L symmetry)
.

f

subject to 11 F11 = 1 & Y +11 . . . 1)
i

↳ieige de

②k >
-



Find bottom k eigenvectors with eigenvalues 70.

Thus
, with I eigenvector I" ... [SK)

,

each nobe is mapped to a poine in R

so
,
consider node i:

Practical Issue :

new coordinate f")
(2) (k)

ti ... fi
I Lnorm : 15 L 15

(1) [2 ... (K) I

where j
- 1/2

is the dia onal matrixI

- !%- !
whose ith diagonal entry is Yuii.

Normalizelaplacian to find
embathing for solei : z'"ERK I

eigenvectors.

I

CLaplacian Eigenmaps) .

I

I

&upervised Learning

Example : given others movie racting -> prehice your rating of the movie.

i = (x ,,
82

,
Us

,
24

,

43) Regression -> number

H (ii) = prediction . classification -> class labels.

y
prediction function .

Empirical Risk Minimization (ERM).

O choose a hypothesis class

② choose a loss function

③ minimize expected loss Cempirical risk).



H(j) 4 : a see of
Hypothesis class H.

- ↑ H(22)predictionLa set of possible prediction functions). function.

↓
· H : = linear function
H : = decision tree

The
more complex the hypothesis class,

the
greater the darg er oferfitting

H : = neural nets

↓
--

Occam's Razor : assume H is simple

&
L

Assume linear prediction function :

H (2) = Wo + W
, , + Walz + (parameterization) .

= = /Wo, ... ) .

Wo

If there are he features, there are d + 1 parameters.
-

H(i) = wo + W
, , + W262 + ... + ward

.

=

Wo+ wi

Augmented feature vector
-> Angles). we can write H(i) as

: 1) ·

Anglis : (4) ERA H (i) = Aug(i) · i

· TheEne of a prediction function is aeeplace

lossfunction

quantifies how wrong a single prediction is...

L(H("")
, it

"

example loss function :I

- I

Iprediction of
ground truth.

!

① Absolute loss : 1H(") - Gil

ith data.
I ② Square loss : (H)- J:3

Optimize S
. t . H( "l] Yi !

[



A good H is good on average over all data.

Expected loss (empirical risk) :

average loss across all data

R(H)= (H(z")
,

Y:)
. Ea" ,

Sij.

en) Experie Square loss (MSES

Rsp(H) = (H(ii) - Ti)"

-MinimizingExpected Loss

Find I minimizing

↓ Rsq(H) = (H(u") - J:)"

find i
*

mie Rsp = mir (Aug -I

↓
closen form solution : (MSE features 2 , Led.

* = (x +

X)"Xij
.

-
(1) 11/

1x ,
as ... d Gath

(2)X isdesign matrix
X-(

,

) C
,

"

Xc I points

! ! ! · I
· bi sin
. . (n)

vs. Regressionsification
I

Regression - C number I
linear classifier from regressor :

I

classification -> class label
!

↓

! Convert output to
-1

,
If usingL

sign(z) = f!
( O otherwise

.



prediction : sign (H(E2)) .

Decision boundary is place to classify the decie ----------
-

↓ -

- wo + W
,
x, = 0

(2-1) dimension -

-> (
,

= (point
Decision boundary is generally a hyperplane. 1

-

↑

↑

x2 = + (line
decision boundary herived from MS E L

↑

wo + w
, G

,
+ we ar

&

> No + W
, b , + W2@2 + Wgk3

-

affected by oneliers
I Is =

u
-

I

& Chyper place).

-----

natureMapping

Learn new representation by creating new features from old feature.

(non-linear pattern). xErk

Non-linear Basis function :
(E) = ( +, (i)

,
to(s)

f ↓
y

.
... ed'

feature
-

map
a new representation.

(E = =(a)) by mapping each training date te"

to feature space.

↓
er)

. fit linear prediction func. It in

Y
- feature space.

W ~
&~ -

= ~

W
⑧ O ~ - -

~ & Hf(E) = w
.

+ w
, z

,
+. .. + WhEd

.

O G
① how to

Oo
-

-Q-
find H(i2) =No + m

, C
,
(i) + . . + wasYg() .-

W
S

↓
"

s

choose polynomial
basis function.

I



a - > (2
,26ay 9

S

I

S

new feature.
model H(E ) = · Aug( :)

T, E

new design matrix :
↓

e

.
-

where E =

Lexus
.

I C 2 ,

2

4X = I , a2 Uh &: " : ! !

an sen" cn" an4

so, i = (xix)"Xi-

VisualizationPloz

i ......

twenkinz
" - the surface of
... data,.... ..... via feature! I

W

&

&

""
L

mapping.

Radial Basis Function (RBF)
.

-

A generic basis function that works for many problems :

32

= Common choice :

-7

gacession basis function : -(2 ; is , 6) = 2-In-Fill/s"Fye I
center widon



Y(in) =

0

= 1
Mc

Control
2

S
& (i + 6) = =

60
= e = 0

.
369

x2 -⑳I

if Ili - Fill > > 1
,

122 positive #
=

8
-> 0 "

- > Yso

if is close to M , I 21 I ,

X( ; is,
6) is large.

intution:
· if is far from i, ( - >

& measures how "similar" is is to i.

& (i; in ,
6) is small .

(assume similar objects have close

feature rectors)
.

Hocedure :

① pick # of new features : &'
·

pick centers
,
Ye

"

...helds

pick width : 6.... 641 (usually all same).

② = define ith basis function : fi(is) = -"117/6i2

so feature map ) =[viotton
,

a
③ = Last

,
we train a linear classifier in this new representation :

H(E) = wo + w
, z, + . . . + wh) zd

example)

&

2 gaussian
-

S
-

1

& ↑
-

place gaussion in the center (mean) of
the data points (same class label have large "similarity".



H (i) is sum of Gaussians :

H (2) = wo + w
, Y

,
(2) + waYz(i)

= wo + w
, -1-i/o + we /li

- in11462

By increasing # of basis functions ,
we can make more complex decision surfaces.

#FNetwork

Gaussians are ex) of radial basis func .

↓
example RBF :

->
each basis func

.

has Center c

inverse multiquadratic
(

value depends only ondistance from center.

x(
,
:) =

+ -T
Y (m : 2) = f (Ili - = 11)

function to 2 C

& de ben input
is& center

->

measure distance

RBF Network :

O choose basis function +,
, ..., Ya

② Transform date to new representation :

#/, (5)
,

Yal
,

.... Th(s)" .

③ Train ,

H (a) = Wo + w
, Y

, (2) + ... + Was dle)
·

RBF network has these parameters :

· parameter of each individual basis function.



· in (centers

6 (variance)

--

· weight associated to each "new" feature : Wi

Anning :

· find parametes of RBFs first Eye"5

through optimization , clustering ,
randomly

,
---

I
V

A fer fixing those
parameters

· optimize wis F(; ii)

which is linear

#

How to find parameters of RBFs ?

Approaches

① Every deater points as a center .

↓
n basis function (one for each point).

n features

↑ (ii) = 10
,
(5)

,

P.
(ii)

,

· . . /E)]"

problem : overfitting & compretationally expensive.
-> F Ind')

if d = n

=> O(nS)
.② Random sample

ranhoule choose ↳ data points as center

problems : undersample/oversample a region.



③ Clustering

group hata points into clusters.

· cluster centers => RBFs .

Inference :

· given a point
is

, map it to feature space is H(.
(2) ... (k)"

· evaluated If in feature space. Hf(E)

&Earl oclustering for picking parameters of RBFs
.

idea :
&

compress each clostering into a single point while
minimizing information loss .

· Given :
data Ec"fE R& and a parameter K.

· Find : K clusters Center ins" ... Tn" so that

average square distance from a data point to

nearest cluster center is small

( nearest Center

↓
> Cost(i" ...) =M,

k,
11 "

- Ti /1"
.

j ju ↑
optimize cost

index of index of
data cluster center .

larger cost

smaller cost.



Lloyd's algorithm for K-means :

-

① initialize Centers Ye" ... is

② repeat until convergence :

·

assign each point i to cloest center.

uphase each jelis as the mean of points assigned to it.

mCan

location of
assigned points for

- each center in

How to choose K ?
-

increase k alwaysdecrease objective function

↓
bowMethod :

run k-means repeatedly with increasing values of K.
- -

the values of the-objectiveas function of K.

· find debor in ploe.

X
elbow

-> good value of K



RB F network :

· k-mean clustering to find center

· create new features using K RBFs.

· lease square classifier
.

There is other parameter of RBFs

-> choose via cross validation.

NeuralNetwork

Neurons are organiza into layers.

↓

input layers

Output layers
hidden layers

" = H(2)
--"

oneput

Notation : layer index

- 2 wist
"T

nauron index* [1
.

input
din hidden him. neuron

I I index in
in next

W 2x3 previou layer layer.

w" =(i ( E R

" = 13
,

-

2
- /

ERs
din

↓

3 X
-w = (2) = R &

output
him.

-

312
= ( - 4)" ERI



· # of cells in input layer determined by him. of input feature vector.

· # of cells in hidden layer determined by you.

output layer can have 71 neurons.

These are "fully-connected , tead-forward !
"

networks with one input.

↓

They are function H() :
12-> R ·

↓

forward pass : comput layer ii)
,

use as input for layer it
-

· let z' be output of mode j in layer i.

, is T
·

outputs :

"
= IE1

,
Z's

,

. . .)

·

"
= [Wiz +*

Each lager is a function :

ens . H"(z) = In "I 'z + is""

H
"

: R
=

-> R3
H(m) = H"(H'"(i))

· H
* (E) = [W127: + 312

- "W" 2 + 22Tb" + 32
↓ -

- ↓

H12
: 13 -> k

= w
+ 2 + 5

↓

H (E) : In"7"(In"F + &") + is = i - Aug() ·

NiNN are linea :
"

Non-linearity -> Activation Function

↓

as = g(z, ") theactual output of neverons.I

T
activation function g(0)



cample of activation function :

I
· G(z) =

I + e
- z signoid

----
6-

↓
z

,
zo

· g(z) = maxE O
,
Zj =

Co
, z10.

/

I Y

Activation of Ouepret neurons can be different than activation

of hidden neurons.

Interpretation from feature map :

↓
hidden layer of a neural networks learn a feature map.

-

-
Parameters for prediction.

17

--

? update together.

W parameters for feature map

Training :

-

Empirical risk minization.

· a training see E(E"))
,

%: %.

initialize prediction function H.



pick loss function .

weighted
11 Lecta

prediction .

groundth
loss

.

points
· minimiza risk w

.

r
.

t. - - Y 2
L 1

-

↓ 7
2sp() = (H(u") - (i) = (Angle") . i - Y: )"I

-

loss 2 H/2 W
, ,

"

w
.
r

.

z
.

lossgradienemescent
aryn

, ..., b wal ↓ I (3)

I
YER(z) = 16/00

,

:
I2H/2W2 ↓

> =
YR()= Hi ; is all weights

of all layers.

What is - H ? ↓ chain-rule.

suppose It is neurd net with activative

-> as Hi , i) = 6/m
* "6(w'" "6(W" 'x + b") + b

%

)+b)
.

↓ chain rule ?
note : often useful to pack all weights

into a parameter vector P

Aside : Gerivative of RELU.

= (m ,"", wil ...,

"

,
bawi

-2

6, Sb
,

, 4

,

W
, z

&
--- &

-"T I
--

---------
-

-

g 9) (z) = max to, zj I

g'(z) =[ I

I

chain rule : I

I

f(g(u)
,

+(g(s) = f (g(n))9'(n) ,

----

ex) H = a, = g(z , )

a
!

"

z, w, , a !
"

+ We,

= wi"g(n, x
, + Wexz + w,", as) +

-

We g (w, ,"s
,

+ We" 2 + wires

= (w ,," g'(z :") . x ,

-



13) 12)

z = W, a
,

+...

Blast layer :

12 &

W,

⑫ =ziz).as
② second last layer :

13

J 13)

:g = g'(z,) . w
,

· 9'z; ) a ,

③ First layer
z = w,

-

+ ...

↓ depende on all

↓

b %in

4/

orange.

terms

a
,-air,

a? = g(zi) = g(w,
"

al S + ----

backpropagation :

Consider arbitary node in layer "l" of a NN.

· Let
o be the activation function.

he henotes the # of vodes in layer I.

J H· all - 1)
il &

GZj

w
Ils(1- 1)

since = witai
(2- 1)

+ [Wkj C
/

Zj kt'j

2z;

'l

--· = 2 b
;
'e -
↓-6/



I

I

I

!jI

I

· Derivative in layer I depends on herivatives in layer lett).

↓
recursive formulas :

- >

given inpret is and a current parameter vector u

19
and ait for all robes.· evaluate the network to compute Z :

· for each layer I from last to first,

-- ---

(l+ 11Yeag-z minin # from last layer/next layer .

?...

=I = 9'(z)

· CH/2w,= a
. /(b;=

example) .



-

-

-

-

-

-

-

-



idea : f(g(k)) input Ope f(9(2))
-

&

goal :detea 3g(f

Backpropagation via

gradientdescentt
writ the weightsgra

↓-by iterative optimization.

f :
R -> 1 !

gradient of at in

=f(u) = ((i) ... )
↓

=[dE also a function
mapping from

idea from taylor expansion :

124 ->!

- (no + zn
,

+ zy) = + (40,%) + E .
Y+(20 ,%)

.

① ② ③

① = ③ should be negative :

=> .+(40,%) < O
.

whichE can we decrease the value of O the mose ?

=> =) - f b/c

↓
&

...
-f 11 f()/l

measures steepness

this is direction of - of ascent.

Steepesthescent at
-

↳
· direction orehogonal to +(c)

,
+ does not change !



- -

&

So

-

gradient Descent
-

as follow I

I I

pick learning rate M > 0.
I I

I repeat until convergence.

I
K

I

-xi + 1)
=i f(is).

I

I steepest descent direction.
I

stop-When lle"- YetII is small
I

- -

- -
-

So
,

in Neural Network Training

consider square
loss :

YER(n)= H(iii)
.

=H -

:)H

↓
bac crop thecontinue # errors
-

through the largers
.

Difficulties of training NN :

·
when activation are non-linear

,
risk of NN

.

is itinconvex.
· vanishing gradient problems

↓

gradient of weightIt at earlier layers can be very small

↓ result
I II

& ~
the update of m is very slow by gradient descent?
- S

b/c

one mitigation : use ReLU instead of signoid : S gradient
S

accumulacier de

1-9% &

by multiplication
I- I
↑

& - 1

I



· computational lost is high .

↓ possible solution

Batch learning

for batch size m > 1 the # data points.

↓

compute stochastic gradient based on the batch of data points

(m)

-R()= (H),
qu pro : fase to compute

batch
con : approximation of full gradient is noisy.

-volutionNeveral Network

↓
image recognition by line detector

example)
Shape detector

00 25s

00255I face deter
( * ) =>

result

00255

convolution with an elege filter. (255x3)
0 -11

(detect edges in the image)
0

- 11

vertical/horizoneal/diagonal. 0 - 11

↑ g

detect transition

example) & from no edge to edge)

more the filter over the entire image, repeat procedure.

=Goo
2) - activation map .!

10
,

& : 9!000 *-!0
,00. 9,

I
2 D - convolution of filter with the image .

----- -- --

00 0
.
80 0 0

. 9
⑧ 0 0

. 7 0 O O



Typically ,
3 x3 or 5x5. hyperparameter in convolution.

-
Variations : different wide

, imaga paldinI
-

↓

(Stribe = 1 =) more 1 pixel)

controls how far to more

Filter must have 3 channels :

eu)
.

3 x3x3

El
files /same channel as image)

output still 2)

3 channels

#N : use convolution in early layers to create new feature representation.

~
nikesare learned

K filters will result in h chanels in the next layer.

I activation func. applied entrywise.



~

3x3x4

- gi
must mach the channel of input

↓
oneput will be 3 channels.

luse laye to fully connecia.

Maypooling :

>
Choose the may

entry

toencoder

representation learning is

↓
finds an encoding function. cube(i) : R

*
-> R"

· captures useful aspect of data distribution.

· encode can decrease dimensionality.
· preserve as much info above in as possible.



by enoting
,

we hope todecode and reconstruct original data.

i& Gecode (encobe(i)).
-

H

reconstruction.

Reconstruction error : Ellie" - Lecode (encode (") II ".

Trivia solution :

encobe(iv) = E = Gecode (i)
,
which 's not useful.

example) PCA

encole by projection 0170 top
I eigenvectors.

encobe (i) = viz

decode (E) = VZ
3

where columns of U be top k eigenvectors of
covariance matrix.

-mode/decoderas Neural Net

decode (encode(i)) as a NN
· (non-linear activation).

R" -> 12" -> 12" -inputt = I Outpre
- I- TL-~(

encoder
(
decoder.

During training ,

-H)I= - (H());
minimiz reconstruction error

Autoencode is generalization of PLA



such that performs orthogonal projection. Y
So ↑CA minimizes reconstruction error

encoder (ii) = Vi ze
subject to constraine that columns of U

-

hecohe(z) = Vz are orchonormal .
-

However
,

ancoemode learns (non-orthogonal
projection into same space of PCA

useof Autoencoder :

· dimensionality reduction (non-linear) (k < d
.)

denoising auto encoder (k > d) greater
dimension.
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Nausality

Association : X & Y are associal if

= x
, + 42

,
P(Y(x = 2) + P(Y(X = mr)

Causality : EU, 12
,
P1YAr,) + P(Y) do (x = 42).

↓
Y is manipulated/intervene to2e,

11

no" operation.

Directed graph can represent causal relationship.

1111I can be boosed

and more interpretable if we

find causality.
smoKing↓

&3. Questions in A I. /

↓ ↓
x - - XS

Yellpur

- fingers - cough

ML only relys on

association with no direct

-

causaliza

-

-



How to find causality ?

↓
randomized controlled trials

↓ (require lots of resources

find causal relationship from passive observational data under assumption.

↓
causal discovery & inference.

(discover causal relationship & estimate causal effects from observational data).

causal discovere example for latent discovers


